Secretion of matrix metalloproteinase‐9 by the proinflammatory cytokine, IL‐1β: a role for the dual signalling pathways, Akt and Erk

Document Type


Publication Date



BACKGROUND: Matrix metalloproteinases including MMP-9 mediate matrix destruction during chronic inflammatory diseases such as arthritis and atherosclerosis. MMP-9 up-regulation by inflammatory cytokines involve interactions between several transcription factors including activator protein-1 and NFkappaB. The upstream regulatory pathways are less well understood.

RESULTS: To search for the mechanism of tissue destruction in the process of inflammatory disorders, we investigated the signalling pathway critical for the activation of MMP-9 expression and secretion by IL-1beta. Treatment of Balb 3T3 cells with IL-1beta activated MMP-9 transcription and subsequent secretion in a time- and dose-dependent manner. Concomitantly, IL-1beta treatment of cells activated phosphorylation of Akt, Erk and p38. Treatment of cells with either LY294002, a PI3K inhibitor, or expression of a dominant negative form of Akt drastically suppressed the IL-1beta-dependent secretion of MMP-9. Pretreatment of cells with a MEK1 inhibitor, U0126, also strongly inhibited IL-1beta-dependent secretion of MMP-9. In contrast, pre-treatment with a specific p38 kinase inhibitor, SB203580, had no effect on IL-1beta-dependent secretion of MMP-9. In addition, cells expressing constitutively active form of Akt or MEK1 showed no clear activation of MMP-9 secretion, whereas these cells responded well to IL-1beta treatment. However, co-transfection of cells with both active Akt and MEK1 was sufficient to induce MMP-9 secretion without stimulation with IL-1beta.

CONCLUSION: Taken together, our results suggest that IL-1beta stimulation of cells activates MMP-9 secretion by the activation of the dual signalling pathways, the PI3K-Akt and MEK1-Erk and constitutive activation of these pathways were sufficient to induce MMP-9 secretion.


Copyright © Blackwell Publishing Limited. All rights reserved.