Synthesis and antimalarial activity of metal complexes of cross- bridged tetraazamacrocyclic ligands

Document Type


Publication Date

Summer 7-1-2014


Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn 2+ complex of this ligand was the most potent with IC 50 s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn 2+. Few of the Cu 2+ and Fe 2+ complexes also showed improvement in activity but Ni 2+, Co 2+ and Zn 2+ complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development.


The version of record is available from the publisher at http://dx.doi.org/10.1016/j.bmc.2014.05.003. Copyright © 2014 Elsevier B.V. All rights reserved.