Date of Award
2009
Degree Name
Mathematics
College
College of Science
Type of Degree
M.A.
Document Type
Thesis
First Advisor
Basant Karna
Second Advisor
Bonita Lawrence
Third Advisor
Judith Silver
Abstract
This thesis is on the study of dynamic equations on time scale. Most often, the derivatives and anti-derivatives of functions are taken on the domain of real numbers, which cannot be used to solve some models like insect populations that are continuous while in season and then follow a difference scheme with variable step-size. They die out in winter, while the eggs are incubating or dormant; and then they hatch in a new season, giving rise to a non overlapping population. The general idea of my thesis is to find the conditions for having a positive solution of any boundary value problem for a dynamic equation where the domain of the unknown function is a so called time scale, an arbitrary nonempty closed subset of the reals.
Subject(s)
Differential equations.
Difference equations.
Differentiable dynamical systems.
Recommended Citation
Otunuga, Olusegun Michael, "Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale" (2009). Theses, Dissertations and Capstones. 734.
https://mds.marshall.edu/etd/734
Included in
Dynamical Systems Commons, Dynamic Systems Commons, Ordinary Differential Equations and Applied Dynamics Commons, Partial Differential Equations Commons