Predicting failure in mammalian enamel
Document Type
Article
Publication Date
Winter 1-1-2009
Abstract
Dentition is a vital element of human and animal function, yet there is little fundamental knowledge about how tooth enamel endures under stringent oral conditions. This paper describes a novel approach to the issue. Model glass dome specimens fabricated from glass and backfilled with polymer resin are used as representative of the basic enamel/dentine shell structure. Contact loading is used to deform the dome structures to failure, in simulation of occlusal loading with opposing dentition or food bolus. To investigate the role of enamel microstructure, additional contact tests are conducted on twophase materials that capture the essence of the mineralizedrod/organicsheath structure of dental enamel. These materials include dental glassceramics and biomimicked composites fabricated from glass fibers infiltrated with epoxy. The tests indicate how enamel is likely to deform and fracture along easy sliding and fracture paths within the binding phase between the rods. Analytical relations describing the critical loads for each damage mode are presented in terms of material properties (hardness, modulus, toughness) and tooth geometry variables (enamel thickness, cusp radius). Implications in dentistry and evolutionary biology are discussed.
Recommended Citation
Lawn BR, Lee JJ-W, Constantino PJ, and Lucas PW. Predicting failure in mammalian teeth. Journal of the Mechanical Behavior of Biomedical Materials 2:33-42.
Comments
NOTICE: Must not be used for commercial purposes. Commercial purposes include systematic distribution or creating links for commercial customers to articles.
http://www.journals.elsevier.com/journal-of-the-mechanical-behavior-of-biomedical-materials/#description
http://dx.doi.org/10.1016/j.jmbbm.2008.05.007