Document Type

Article

Publication Date

12-2020

Abstract

Background Whole-body vibration (WBV) is a relative new intervention paradigm that could reduce spasticity and improve motor function in children with cerebral palsy (CP). We investigated neuromuscular response to a single session of side-alternating WBV with different amplitudes in children with CP.

Methods Ten children with spastic CP aged 7–17 years at GMFCS level I-III participated in this pilot study. Participants received two sessions of side-alternating WBV with the same frequency (20 Hz) but different amplitudes (low-amplitude: 1 mm and high-amplitude: 2 mm). Each session included six sets of 90 s of WBV and 90 s of rest. Before and after each WBV session, we used (a) the modified Ashworth scale to evaluate the spasticity of the participants' leg muscles, (b) a quiet standing task to analyze center-of-pressure (CoP) pattern and postural control, and (c) overground walking trials to assess spatiotemporal gait parameters and joint range-of-motion (RoM).

Results Both WBV sessions similarly reduced the spasticity of the ankle plantarflexors, improved long-range correlation of CoP profile during standing, and reduced muscle activity of tibialis anterior during walking. The high-amplitude WBV further increased ankle RoM during walking.

Conclusions This study demonstrates that a single session of WBV with either a low or a high amplitude can reduce spasticity, enhance standing posture, and improve gait patterns in children with CP. It suggests that low-amplitude WBV may induce similar neuromuscular response as high-amplitude WBV in children with spastic CP and can provide positive outcomes for those who are not able to tolerate stronger vibration.

Comments

This is the peer-reviewed manuscript. The version of record is available from the publisher at https://doi.org/10.1016/j.clinbiomech.2020.105170.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Share

COinS