Document Type
Article
Publication Date
Fall 10-27-2012
Abstract
Intra bone marrow-bone marrow transplantation (IBM- BMT) + thymus transplantation (TT) has been shown to reduce the incidence of graft versus host disease (GVHD) and restore donor-derived T cell function. In addition, an increase in insulin sensitivity occurred in db/db mice after IBM-BMT+TT treatment. Heme oxygenase (HO)-1 is a stress inducible enzyme which exert antioxidant, antiapoptotic, and immune-modulating properties. We examined whether IBM-BMT+TT could modulate the expression of HO-1 in the kidneys of db/db mice. Six-week-old db/db mice with blood glucose levels higher than 250 mg/dl were treated with IBM-BMT+TT. Six weeks later, the db/db mice showed decreased body weight, blood glucose levels and insulin, and increased plasma adiponectin levels. The upregulation of HO-1 was associated with significantly (p<0.05) increased levels of peNOS and pAKT, but decreased levels of iNOS in the kidneys of db/db mice. Plasma creatinine levels also decreased (p<0.05), and the expression of type IV collagen was improved. Thus IBM-BMT+TT unregulated the expression of HO-1, peNOS and pAKT, while decreasing iNOS levels in the kidney of db/db mice. This was associated with an improvement in renal function.
Recommended Citation
Li M, Vanella L, Zhang Y, Shi M, Takaki T, Shapiro JI, Ikehara S. Stem cell transplantation increases antioxidant effects in diabetic mice. Int J Biol Sci. 2012; 8: 1335-1344.
Included in
Biochemical Phenomena, Metabolism, and Nutrition Commons, Biological Phenomena, Cell Phenomena, and Immunity Commons, Medical Biochemistry Commons, Medical Specialties Commons
Comments
The copy of record is available from the publisher at http://www.ijbs.com/v08p1335. Copyright © 2012 Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. doi:10.7150/ijbs.4654