Title
Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data
Document Type
Conference Proceeding
Publication Date
2016
Abstract
Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis.
Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals.
Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only.
Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis.
Recommended Citation
Saad M, Nato AQ, Grimson FL, et al. Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data. BMC Proceedings. 2016;10(Suppl 7):295-301. doi:10.1186/s12919-016-0046-5.
Comments
The original paper was presented at the Genetic Analysis Workshop 19, Vienna, Austria. 24-26 August 2014. The copy of record is available from the publisher at https://doi.org/10.1186/s12919-016-0046-5. Copyright © The Author(s). 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.