Document Type
Article
Publication Date
9-2024
Abstract
Earthquakes pose a significant threat to life and property worldwide. Rapid and accurate assessment of earthquake damage is crucial for effective disaster response efforts. This study investigates the feasibility of employing deep learning models for damage detection using drone imagery. We explore the adaptation of models like VGG16 for object detection through transfer learning and compare their performance to established object detection architectures like YOLOv8 (You Only Look Once) and Detectron2. Our evaluation, based on various metrics including mAP, mAP50, and recall, demonstrates the superior performance of YOLOv8 in detecting damaged buildings within drone imagery, particularly for cases with moderate bounding box overlap. This finding suggests its potential suitability for real-world applications due to the balance between accuracy and efficiency. Furthermore, to enhance real-world feasibility, we explore two strategies for enabling the simultaneous operation of multiple deep learning models for video processing: frame splitting and threading. In addition, we optimize model size and computational complexity to facilitate real-time processing on resource-constrained platforms, such as drones. This work contributes to the feld of earthquake damage detection by (1) demonstrating the efectiveness of deep learning models, including adapted architectures, for damage detection from drone imagery, (2) highlighting the importance of evaluation metrics like mAP50 for tasks with moderate bounding box overlap requirements, and (3) proposing methods for ensemble model processing and model optimization to enhance real-world feasibility. The potential for real-time damage assessment using drone-based deep learning models offers significant advantages for disaster response by enabling rapid information gathering to support resource allocation, rescue efforts, and recovery operations in the aftermath of earthquakes.
Recommended Citation
Kizilay, F., Narman, M.R., Song, H. et al. Evaluating fine tuned deep learning models for real-time earthquake damage assessment with drone-based images. AI Civ. Eng. 3, 15 (2024). https://doi.org/10.1007/s43503-024-00034-6
Comments
The copy of record is available from the publisher at https://doi.org/10.1007/s43503-024-00034-6. Copyright © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.