•  
  •  
 

DOI

http://dx.doi.org/10.18590/mjm.2016.vol2.iss3.8

Abstract

Vitamin K is known to play an essential role in the coagulation cascade; however, a growing body of research has found that a subtype of this vitamin, vitamin K2 (menaquinone) may have a beneficial effect in osteoporosis, cardiovascular disease, and cancer. This purpose of this article is to provide a comprehensive review of recent literature regarding menaquinone and its role in human health. This review discusses the physiology of menaquinone, its clinical benefits in cardiovascular disease, osteoporosis, and cancer, and how it may interact with certain medications. The authors conclude that menaquinone supplementation has been shown to improve carboxylation of osteocalcin and matrix-Gla protein to their active forms, two proteins that possess important roles in calcium distribution. In the setting of cardiovascular disease, menaquinone intake has been shown to lower the risk of coronary calcification and coronary heart disease, and a randomized controlled trial has demonstrated that it can reduce arterial stiffness. In osteoporosis, menaquinone has been shown by numerous randomized controlled trials to decrease the rate of bone loss at the lumbar spine and forearm and reduce the risk of fracture. In cancer, menaquinone intake has been shown to reduce overall incidence and mortality; clinical trials have suggested that it may have a role in reducing recurrence and death from hepatocellular carcinoma. However, in all clinical settings, more large randomized controlled trials are needed to definitively determine the clinical benefits of menaquinone supplementation, as many studies have failed to show any significant benefit. Lastly, more research is needed to determine how menaquinone supplementation interacts with medications such as warfarin, bile-acid sequestrants, orlistat, mineral oil and CYP3A4 substrates.

Conflict(s) of Interest

Dr. Shuler serves on the editorial committee of the Marshall Journal of Medicine. The other authors have no conflicts of interest to disclose.

References with DOI

1. Flore R, Ponziani FR, Di Rienzo TA, Zocco MA, Flex A, Gerardino L, et al. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci. 2013;17(18):2433-40.

2. Kaneki M. Vitamin K2 as a protector of bone health and beyond. Clin Calcium. 2005;15(4):605-10.

3. Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K(2)) in human health. The British Journal of Nutrition. 2013;110(8):1357-68. https://doi.org/10.1017/s0007114513001013

4. Parazzini F. Resveratrol, inositol, vitamin D and K in the prevention of cardiovascular and osteoporotic risk: a novel approach in peri- and postmenopause. Minerva Ginecol. 2014;66(5):513-8.

5. Berkner KL. The vitamin K–dependent carboxylase. The Journal of Nutrition. 2000;130(8):1877-80.

6. Patti A, Gennari L, Merlotti D, Dotta F, Nuti R. Endocrine actions of osteocalcin. Int J Endocrinol. 2013;2013:846480. https://doi.org/10.1155/2013/846480

7. Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv. Nutr.. 2013;4(4):463-73. https://doi.org/10.3945/an.113.003855

8. Shearer MJ, Fu X, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv. Nutr. 2012;3(2):182-95. https://doi.org/10.3945/an.111.001800

9. Rheaume-Bleue K. Vitamin K2 and the calcium paradox: how a little-known vitamin could save your life. Mississauga, Ontario: John Wiley and Sons Canada, Ltd.; 2012.

10. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem. 2008;283(17):11270-9. https://doi.org/10.1074/jbc.m702971200

11. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiological Reviews. 1981;45(2):316-54.

12. Kamao M, Suhara Y, Tsugawa N, Uwano M, Yamaguchi N, Uenishi K, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol. 2007;53(6):464-70. https://doi.org/10.3177/jnsv.53.464

13. Elder SJ, Haytowitz DB, Howe J, Peterson JW, Booth SL. Vitamin k contents of meat, dairy, and fast food in the U.S. diet. J Agric Food Chem. 2006;54(2):463-7. https://doi.org/10.1021/jf052400h

14. Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutrition Journal. 2012;11:93. https://doi.org/10.1186/1475-2891-11-93

15. Schurgers LJ, Teunissen KJ, Hamulyak K, Knapen MH, Vik H, Vermeer C. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 2007;109(8):3279-83. https://doi.org/10.1182/blood-2006-08-040709

16. Emaus N, Gjesdal CG, Almas B, Christensen M, Grimsgaard AS, Berntsen GK, et al. Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporosis International. 2010;21(10):1731-40. https://doi.org/10.1007/s00198-009-1126-4

17. van Summeren MJ, Braam LA, Lilien MR, Schurgers LJ, Kuis W, Vermeer C. The effect of menaquinone- 7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br J Nutr. 2009;102(8):1171-8. https://doi.org/10.1017/s0007114509382100

18. Bruge F, Bacchetti T, Principi F, Littarru GP, Tiano L. Olive oil supplemented with menaquinone-7 significantly affects osteocalcin carboxylation. Br J Nutr. 2011;106(7):1058-62. https://doi.org/10.1017/s0007114511001425

19. Dalmeijer GW, van der Schouw YT, Magdeleyns E, Ahmed N, Vermeer C, Beulens JW. The effect of menaquinone-7 supplementation on circulating species of matrix Gla protein. Atherosclerosis. 2012;225(2):397-402. https://doi.org/10.1016/j.atherosclerosis.2012.09.019

20. Theuwissen E, Cranenburg EC, Knapen MH, Magdeleyns EJ, Teunissen KJ, Schurgers LJ, et al. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br J Nutr. 2012;108(9):1652-7. https://doi.org/10.1017/s0007114511007185

21. Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest. 1993;91(4):1769-74. https://doi.org/10.1172/jci116387

22. Ueland T, Gullestad L, Dahl CP, Aukrust P, Aakhus S, Solberg OG, et al. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J Intern Med. 2010;268(5):483-92. https://doi.org/10.1111/j.1365-2796.2010.02264.x

23. Pivin E, Ponte B, Pruijm M, Ackermann D, Guessous I, Ehret G, et al. Inactive matrix Gla-protein is associated with arterial stiffness in an adult population-based study. Hypertension. 2015;66(1):85-92. https://doi.org/10.1161/hypertensionaha.115.05177

24. Beulens JW, Bots ML, Atsma F, Bartelink ML, Prokop M, Geleijnse JM, et al. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009;203(2):489-93. https://doi.org/10.1016/j.atherosclerosis.2008.07.010

25. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH, van der Meer IM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr. 2004;134(11):3100-5.

26. Gast GC, de Roos NM, Sluijs I, Bots ML, Beulens JW, Geleijnse JM, et al. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. 2009;19(7):504-10. https://doi.org/10.1016/j.numecd.2008.10.004

27. Maas AH, van der Schouw YT, Beijerinck D, Deurenberg JJ, Mali WP, Grobbee DE, et al. Vitamin K intake and calcifications in breast arteries. Maturitas. 2007;56(3):273-9. https://doi.org/10.1016/j.maturitas.2006.09.001

28. Knapen MH, Braam LA, Drummen NE, Bekers O, Hoeks AP, Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thrombosis and Haemostasis. 2015;113(5):1135-44. https://doi.org/10.1160/th14-08-0675

29. Knapen MH, Drummen NE, Smit E, Vermeer C, Theuwissen E. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporosis International. 2013;24(9):2499-507. https://doi.org/10.1007/s00198-013-2325-6

30. Inoue T, Fujita T, Kishimoto H, Makino T, Nakamura T, Nakamura T, et al. Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metab. 2009;27(1):66-75. https://doi.org/10.1007/s00774-008-0008-8

31. Kanellakis S, Moschonis G, Tenta R, Schaafsma A, van den Heuvel EG, Papaioannou N, et al. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int. 2012;90(4):251-62. https://doi.org/10.1007/s00223-012-9571-z

32. Katsuyama H, Ideguchi S, Fukunaga M, Fukunaga T, Saijoh K, Sunami S. Promotion of bone formation by fermented soybean (natto) intake in premenopausal women. J Nutr Sci Vitaminol. 2004;50(2):114-20. https://doi.org/10.3177/jnsv.50.114

33. Jiang Y, Zhang ZL, Zhang ZL, Zhu HM, Wu YY, Cheng Q, et al. Menatetrenone versus alfacalcidol in the treatment of Chinese postmenopausal women with osteoporosis: a multicenter, randomized, doubleblinded, double-dummy, positive drug-controlled clinical trial. Clin Interv Aging. 2014;9:121-7. https://doi.org/10.2147/cia.s54107

34. Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr . 2000;71(5):1201-8.

35. Huang ZB, Wan SL, Lu YJ, Ning L, Liu C, Fan SW. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporosis International. 2015;26(3):1175-86. https://doi.org/10.1007/s00198-014-2989-6

36. Tokita H, Tsuchida A, Miyazawa K, Ohyashiki K, Katayanagi S, Sudo H, et al. Vitamin K2-induced antitumor effects via cell-cycle arrest and apoptosis in gastric cancer cell lines. Int J Mol Med. 2006;17(2):235-43. https://doi.org/10.3892/ijmm.17.2.235

37. Enomoto M, Tsuchida A, Miyazawa K, Yokoyama T, Kawakita H, Tokita H, et al. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int J Mol Med. 2007;20(6):801-8. https://doi.org/10.3892/ijmm.20.6.801

38. Hitomi M, Yokoyama F, Kita Y, Nonomura T, Masaki T, Yoshiji H, et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo. Int J Oncol. 2005;26(3):713-20. https://doi.org/10.3892/ijo.26.3.713

39. Otsuka M, Kato N, Shao RX, Hoshida Y, Ijichi H, Koike Y, et al. Vitamin K2 inhibits the growth and invasiveness of hepatocellular carcinoma cells via protein kinase A activation. Hepatology. 2004;40(1):243-51. https://doi.org/10.1002/hep.20260

40. Yokoyama T, Miyazawa K, Yoshida T, Ohyashiki K. Combination of vitamin K2 plus imatinib mesylate enhances induction of apoptosis in small cell lung cancer cell lines. Int J Oncol. 2005;26(1):33-40. https://doi.org/10.3892/ijo.26.1.33

41. Yoshida T, Miyazawa K, Kasuga I, Yokoyama T, Minemura K, Ustumi K, et al. Apoptosis induction of vitamin K2 in lung carcinoma cell lines: the possibility of vitamin K2 therapy for lung cancer. Int J Oncol. 2003;23(3):627-32. https://doi.org/10.3892/ijo.23.3.627

42. Ogawa M, Nakai S, Deguchi A, Nonomura T, Masaki T, Uchida N, et al. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol. 2007;31(2):323-31. https://doi.org/10.3892/ijo.31.2.323

43. Wu FY, Liao WC, Chang HM. Comparison of antitumor activity of vitamins K1, K2 and K3 on human tumor cells by two (MTT and SRB) cell viability assays. Life sciences. 1993;52(22):1797-804. https://doi.org/10.1016/0024-3205(93)90469-j

44. Samykutty A, Shetty AV, Dakshinamoorthy G, Kalyanasundaram R, Zheng G, Chen A, et al. Vitamin k2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. Evidence-based complementary and alternative medicine : eCAM. 2013;2013:287358. http://dx.doi.org/10.1155/2013/287358

45. Nimptsch K, Rohrmann S, Linseisen J. Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr. 2008;87(4):985-92.

46. Nimptsch K, Rohrmann S, Kaaks R, Linseisen J. Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr. 2010;91(5):1348-58. http://dx.doi.org/10.3945/ajcn.2009.28691

47. Yoshida H, Shiratori Y, Kudo M, Shiina S, Mizuta T, Kojiro M, et al. Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology. 2011;54(2):532-40. http://dx.doi.org/10.1002/hep.24430

48. Mizuta T, Ozaki I, Eguchi Y, Yasutake T, Kawazoe S, Fujimoto K, et al. The effect of menatetrenone, a vitamin K2 analog, on disease recurrence and survival in patients with hepatocellular carcinoma after curative treatment: a pilot study. Cancer. 2006;106(4):867-72. http://dx.doi.org/10.1002/cncr.21667

49. Kakizaki S, Sohara N, Sato K, Suzuki H, Yanagisawa M, Nakajima H, et al. Preventive effects of vitamin K on recurrent disease in patients with hepatocellular carcinoma arising from hepatitis C viral infection. J Gastroenterol Hepatol. 2007;22(4):518-22. http://dx.doi.org/10.1111/j.1440-1746.2007.04844.x

50. Ishizuka M, Kubota K, Shimoda M, Kita J, Kato M, Park KH, et al. Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: a prospective randomized controlled trial. Anticancer Research. 2012;32(12):5415-20.

51. Hotta N, Ayada M, Sato K, Ishikawa T, Okumura A, Matsumoto E, et al. Effect of vitamin K2 on the recurrence in patients with hepatocellular carcinoma. Hepato-gastroenterology. 2007;54(79):2073-7.

52. Hosho K, Okano, J., Koda, M., Murawaki, Y. Vitamin K2 has no preventative effect on recurrence of hepatocellular carcinoma after effective treatment. Acta Medica. 2008;51(4):95-9.

53. Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K, et al. Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol. 2009;51(2):315-21. http://dx.doi.org/10.1016/j.jhep.2009.04.011

54. Habu D, Shiomi S, Tamori A, Takeda T, Tanaka T, Kubo S, et al. Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. Jama. 2004;292(3):358-61. http://dx.doi.org/10.1001/jama.292.3.358

55. Kojima K, Tamano M, Akima T, Hashimoto T, Kuniyoshi T, Maeda C, et al. Effect of vitamin K2 on the development of hepatocellular carcinoma in type C cirrhosis. Hepato-gastroenterology. 2010;57(102- 103):1264-7.

56. Riaz IB, Riaz H, Riaz T, Rahman S, Amir M, Badshah MB, et al. Role of vitamin K2 in preventing the recurrence of hepatocellular carcinoma after curative treatment: a meta-analysis of randomized controlled trials. BMC Gastroenterology. 2012;12:170. http://dx.doi.org/10.1186/1471-230x-12-170

57. Zhong JH, Mo XS, Xiang BD, Yuan WP, Jiang JF, Xie GS, et al. Postoperative use of the chemopreventive vitamin K2 analog in patients with hepatocellular carcinoma. PloS one. 2013;8(3):e58082. http://dx.doi.org/10.1371/journal.pone.0058082

58. Schurgers LJ, Teunissen KJF, Hamulyák K, Knapen MHJ, Vik H, Vermeer C. Vitamin K–containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 2007;109(8):3279-83. http://dx.doi.org/10.1182/blood-2006-08-040709

59. Theuwissen E, Teunissen KJ, Spronk HMH, Hamulyák K, Ten Cate H, Shearer MJ, et al. Effect of lowdose supplements of menaquinone-7 (vitamin K2) on the stability of oral anticoagulant treatment: dose– response relationship in healthy volunteers. J Thromb Haemost. 2013;11(6):1085-92. http://dx.doi.org/10.1111/jth.12203

60. Tabb MM, Sun A, Zhou C, Grun F, Errandi J, Romero K, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem. 2003;278(45):43919-27. http://dx.doi.org/10.1074/jbc.m303136200

61. Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30(7):795-804. http://dx.doi.org/10.1124/dmd.30.7.795

62. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391-6.

63. Ast M, Frishman WH. Bile acid sequestrants. Journal of clinical pharmacology. 1990;30(2):99-106. http://dx.doi.org/10.1002/j.1552-4604.1990.tb03447.x

64. McDuffie JR, Calis KA, Booth SL, Uwaifo GI, Yanovski JA. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy. 2002;22(7):814-22. ttp://dx.doi.org/10.1592/phco.22.11.814.33627

65. Ferreira Silva R, Rita Carvalho Garbi Novaes M. Interactions between drugs and drug-nutrient in enteral nutrition: a review based on evidences. Nutr Hosp. 2014;30(3):514-8.

66. Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg. 2003;85(1):1-3. http://dx.doi.org/10.2106/00004623-200301000-00001