Author Credentials

Alfred Cecchetti, PhD, MSc, MSc IS Director, Division of Clinical Informatics (DCI) Research Assistant Professor Marshall Health and Department of Clinical and Translational Sciences (DCTS) Joan C. Edwards School of Medicine




Machine learning, the process of teaching a machine to recognize patterns without explicitly being programmed, can provide to medical personnel a powerful tool that can dramatically improve rural patient health.

Conflict(s) of Interest


References with DOI

1. Rabinowitz HK, Paynter NP. The rural vs urban practice decision. Jama. 2001;287(1):113. https://doi.org/10.1001/jama.287.1.113

2. Anderson AE, Henry KA, Samadder NJ, Merrill RM, Kinney AY. Rural vs urban residence affects risk appropriate colorectal cancer screening. Clinical Gastroenterology and Hepatology. 2013;11(5):526-533. https://doi.org/10.1016/j.cgh.2012.11.025

3. Reif S, Whetten K, Ostermann J, Raper JL. Characteristics of HIV-infected adults in the deep south and their utilization of mental health services: a rural vs urban comparison. AIDS Care. 2006;18(S1):10-17. https://doi.org/10.1080/09540120600838738

4. Shubhakaran KP, Khichar RJ. Stroke management disparity in urban vs rural locations. ANN Publications. Neurology. https://doi.org/10.1001/archneur.65.7.887

5. Newgard CD, Fu R, Bulger E, Hedges JR, Mann NC, Wright DA, Lehrfeld DP, Shields C, Hoskins G, Warden C, Wittwer L, Cook JN, Verkest M, Conway W, Somerville S, Hansen M. Evaluation of rural vs urban trauma patients served by 9-1-1 emergency medical services. JAMA Surgery. 2017;152(1):11-18. https://doi.org/10.1001/jamasurg.2016.3329

6. Centers for Disease Control and Prevention (April 2018) National Center for Health Statistics, downloaded from https://www.cdc.gov/nchs/pressroom/states/westvirginia/westvirginia.htm.

7. Sreejith S, Rahul S, Jisha RC. 2016. A real time patient monitoring system for heart disease prediction using random forest algorithm. In Advances in Signal Processing and Intelligent Recognition Systems (pp. 485-500). Springer, Cham. https://doi.org/10.1007/978-3-319-28658-7_41

8. Patil PR, Kinariwala SA. 2017. Automated Diagnosis of Heart Disease using Random Forest Algorithm. International Journal of Advance Research, Ideas and Innovations in Technology. https://github.com/mbbrigitte/Predicting_heart_disease_UCI/blob/master/heartdisease_UCI.

9. Tanaka T, Voigt MD. Decision tree analysis to stratify risk of de novo non-melanoma skin cancerfollowing liver transplantation. Journal of cancer research and clinical oncology. 2018;144(3):607-615. https://doi.org/10.1007/s00432-018-2589-5

10. Paxton RJ, Zhang L, Wei C, Price D, Zhang F, Courneya KS, Kakadiaris IA. An exploratory decision tree analysis to predict physical activity compliance rates in breast cancer survivors. Ethnicity & Health. 2017:1-13.

11. Moreno Hoyo, A. 2017. Predicting car accidents in Barcelona using a Random Forest model. Master's thesis, Universitat Politècnica de Catalunya.

12. Xiaohui J. Forecast model of road traffic accidents based on LS-SVM with grey correlation analysis. Application Research of Computers. 2016;3:038.

13. Khatri KL, Tamil LS. Early Detection of Peak Demand Days of Chronic Respiratory Diseases Emergency Department Visits Using Artificial Neural Networks. IEEE journal of biomedical and health informatics. 2018;22(1):285-290. https://doi.org/10.1109/jbhi.2017.2698418

14. Oijuela-Canon AD, Gomez-Cajas DF, Sepulveda A. 2015. Respiratory Diseases discrimination based on acoustic lung signals and neural networks. In Signal Processing, Images and Computer Vision (STSIVA), 20th Symposium. IEEE. https://doi.org/10.1109/stsiva.2015.7330461

15. McKinley R, Häni L, Gralla J, El-Koussy M, Bauer S, Arnold M, Wiest R. Fully automated stroke tissue estimation using random forest classifiers (FASTER). Journal of Cerebral Blood Flow & Metabolism. 2017;37(8):2728-2741. https://doi.org/10.1177/0271678x16674221

16. Chen L, Bentley P, Rueckert D. A novel framework for sub-acute stroke lesion segmentation based on random forest. Ischemic Stroke Lesion Segmentation. 2015:9.

17. Xu W, Zhang J, Zhang Q, Wei X. 2017. Risk prediction of type II diabetes based on random forest model. In Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). Third International Conference. IEEE. https://doi.org/10.1109/aeeicb.2017.7972337

18. Shukla N, Arora M. Prediction of Diabetes Using Neural Network & Random Forest Tree. International Journal of Computer Sciences and Engineering. 2016;4:101-104.

19. Basaia S, Agosta F, Wagner L, Magnani G, Filippi M. 2018. Automatic classification of patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) who will convert to AD using deep neural networks.

20. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural MR and FDG-PET images. Scientific Reports. 2018;8(1):5697. https://doi.org/10.1038/s41598-018-22871-z

21. Ravindra BV, Sriraam N, Geetha M. Classification of non-chronic and chronic kidney disease using SVM neural networks. International Journal of Engineering and Technology (UAE). 2018;7(1.3):191-194.

22. Annapoorani JCB, Gnanaselvam CR. Enhancing prediction accuracy of chronic kidney disease using neural networks. Automation and Autonomous System. 2018;10(1):10-15.

23. Wiemken TL, Furmanek SP, Mattingly WA, Guinn BE, Cavallazzi R, Fernandez-Botran R, Ramirez JA. Predicting 30-day mortality in hospitalized patients with community-acquired pneumonia using statistical and machine learning approaches. The University of Louisville Journal of Respiratory Infections. 2017;1(3):10. https://doi.org/10.18297/jri/vol1/iss3/10/

24. Menéndez RV. The diagnostic evaluation of rapid sputum technics for pneumococcus in community acquired pneumonia. The usefulness of Bayes theorem for clinical application. Archivos de bronconeumologia. 1995;31(7):317-322.

25. Ayat S, Farahani HA, Aghamohamadi M, Alian M, Aghamohamadi S, Kazemi Z. A comparison of artificial neural networks learning algorithms in predicting tendency for suicide. Neural Computing and Applications. 2013;23(5):1381-1386. https://doi.org/10.1007/s00521-012-1086-z

26. Bhat HS, Goldman-Mellor SJ. 2017. Predicting Adolescent Suicide Attempts with Neural Networks. arXiv preprint arXiv:1711.10057.

27. Gondi S, Patel K. Improving rural health: how system-level innovation and policy reform can enhance health outcomes across the United States. IEEE pulse. 2016;7(6):8-12. https://doi.org/10.1109/mpul.2016.2608447

28. Mohr DC, Zhang M, Schueller SM. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annual Review of Clinical Psychology. 2017;13:23-47. https://doi.org/10.1146/annurev-clinpsy-032816-044949