Date of Award

2019

Degree Name

Physics

College

College of Science

Type of Degree

M.S.

Document Type

Thesis

First Advisor

Dr. Huong Nguyen, Committee Chairperson

Second Advisor

Dr. Thomas Wilson

Third Advisor

Dr. Judy Fan

Abstract

It has been suggested theoretically and realized experimentally that combining organic material and inorganic semiconductors in one heterostructure would result in resonant interactions between the Frenkel excitons in the organic material and the Wannier-Mott excitons in the semiconductors, leading to the formation of an exciton hybridization state. The new materials, possessing the complimentary characteristics of both exciton types, such as large exciton radius, enormous oscillator strength and room-temperature operation properties, would enhance optical nonlinearities and promise to have useful applications in both the field of Bose-Einstein condensation of polaritons and polariton lasers. In this work, we consider a strong coupling of the hybrid excitons and photons near excitonic resonance analytically with the purpose of determining the electronic structure, energy, and dispersion relation of the hybrid exciton-polariton. We study different confinement parameters for various nano-scale heterostructures, and in doing so, we discuss the conditions necessary for their formation. Our ab initio approach moves us a step closer to realizing new, novel optoelectrical materials that exhibit the strengths of each constituent.

Subject(s)

Exciton theory.

Quasiparticles (Physics)

Share

COinS